51 research outputs found

    Microbes in the built environment

    Get PDF
    The COVID-19 pandemic has encouraged scientists and the general population to think more than ever before about how we interact with microbes in our indoor spaces. Research investigating transmission of SARS-CoV-2 has advanced our knowledge significantly in the last two years. However, indoor and built environment microbiomes are extremely complex polymicrobial systems. We have barely scratched the surface in our understanding of the microbial inhabitants of our indoor and urban spaces. The Microbes in the Built Environment Collection showcases recent research in this important topic around the globe

    Enhanced propagation of motile bacteria on surfaces due to forward scattering

    Get PDF
    How motile bacteria move near a surface is a problem of fundamental biophysical interest and is key to the emergence of several phenomena of biological, ecological and medical relevance, including biofilm formation. Solid boundaries can strongly influence a cell's propulsion mechanism, thus leading many flagellated bacteria to describe long circular trajectories stably entrapped by the surface. Experimental studies on near-surface bacterial motility have, however, neglected the fact that real environments have typical microstructures varying on the scale of the cells' motion. Here, we show that micro-obstacles influence the propagation of peritrichously flagellated bacteria on a flat surface in a non-monotonic way. Instead of hindering it, an optimal, relatively low obstacle density can significantly enhance cells' propagation on surfaces due to individual forward-scattering events. This finding provides insight on the emerging dynamics of chiral active matter in complex environments and inspires possible routes to control microbial ecology in natural habitats

    Comparative Study of the Antimicrobial Effects of Tungsten Nanoparticles and Tungsten Nanocomposite Fibres on Hospital Acquired Bacterial and Viral Pathogens

    Get PDF
    © 2020 The Author(s). This is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.A significant proportion of patients acquire hospital associated infections as a result of care within the NHS each year. Numerous antimicrobial strategies, such as antibiotics and surface modifications to medical facilities and instruments, have been devised in an attempt to reduce the incidence of nosocomial infections, but most have been proven unsuccessful and unsustainable due to antibiotic resistance. Therefore, the need to discover novel materials that can combat pathogenic microorganisms is ongoing. Novel technologies, such as the potential use of nanomaterials and nanocomposites, hold promise for reducing these infections in the fight against antimicrobial resistance. In this study, the antimicrobial activity of tungsten, tungsten carbide and tungsten oxide nanoparticles were tested against Escherichia coli, Staphylococcus aureus and bacteriophage T4 (DNA virus). The most potent nanoparticles, tungsten oxide, were incorporated into polymeric fibres using pressurised gyration and characterised using scanning electron microscopy and energy dispersive X-ray spectroscopy. The antimicrobial activity of tungsten oxide/polymer nanocomposite fibres was also studied. The results suggest the materials in this study promote mediation of the inhibition of microbial growth in suspension.Peer reviewe

    Exploiting the antiviral potential of intermetallic nanoparticles

    Get PDF
    © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Viral pandemic outbreaks cause a significant burden on global health as well as healthcare expenditure. The use of antiviral agents not only reduces the spread of viral pathogens but also diminishes the likelihood of them causing infection. The antiviral properties of novel copper-silver and copper-zinc intermetallic nanoparticles against Escherichia coli bacteriophage MS2 (RNA virus) and Escherichia coli bacteriophage T4 (DNA virus) are presented. The intermetallic nanoparticles were spherical in shape and were between 90 and 120 nm. Antiviral activity was assessed at concentrations ranging from 0.05 to 2.0 wt/v% for 3 and 24 h using DNA and RNA virus model organisms. Both types of nanoparticles demonstrated strong potency towards RNA viruses (> 89% viral reduction), whilst copper-silver nanoparticles were slightly more toxic towards DNA viruses when compared to copper-zinc nanoparticles. Both nanoparticles were then incorporated into polymeric fibres (carrier) to investigate their antiviral effectiveness when composited into polymeric matrices. Fibres containing copper-silver nanoparticles exhibited favourable antiviral properties, with a viral reduction of 75% after 3 h of exposure. The excellent antiviral properties of the intermetallic nanoparticles reported in this study against both types of viruses together with their unique material properties can make them significant alternatives to conventional antiviral therapies and decontamination agents.Final Published versio

    Applied Methods to Assess the Antimicrobial Activity of Metallic-Based Nanoparticles

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/With the rise of antibiotic resistance, the drive to discover novel antimicrobial substances and standard testing methods with the aim of controlling transmissive diseases are substantially high. In healthcare sectors and industries, although methods for testing antibiotics and other aqueous-based reagents are well established, methods for testing nanomaterials, non-polar and other particle-based suspensions are still debatable. Hence, utilities of ISO standard validations of such substances have been recalled where corrective actions had to be taken. This paper reports a serial analysis obtained from testing the antimicrobial activities of 10 metallic-based nanomaterials against 10 different pathogens using five different in vitro assays, where the technique, limitation and robustness of each method were evaluated. To confirm antimicrobial activities of metallic-based nanomaterial suspensions, it was found that at least two methods must be used, one being the agar well diffusion method, which was found to be the most reliable method. The agar well diffusion method provided not only information on antimicrobial efficacy through the size of the inhibitory zones, but it also identified antimicrobial ions and synergistic effects released by the test materials. To ascertain the effective inhibitory concentration of nanoparticles, the resazurin broth dilution method is recommended, as MIC can be determined visually without utilising any equipment. This method also overcomes the limit of detection (LoD) and absorbance interference issues, which are often found in the overexpression of cell debris and nanoparticles or quantum dots with optical profiles. In this study, bimetallic AgCu was found to be the most effective antimicrobial nanoparticle tested against across the bacterial (MIC 7 µg/mL) and fungal (MIC 62.5 µg/mL) species.Peer reviewe

    Antibiotic resistance genes and the association with bacterial community in biofilms occurring during the drinking water granular activated carbon (GAC) sandwich biofiltration

    Get PDF
    The granular activated carbon (GAC) sandwich modification to slow sand filtration could be considered as a promising technology for improved drinking water quality. Biofilms developed on sand and GAC surfaces are expected to show a functional diversity during the biofiltration. Bench-scale GAC sandwich biofilters were set-up and run continuously with and without antibiotic exposure. Surface sand (the schmutzdecke) and GAC biofilms were sampled and subject to high-throughput qPCR for antibiotic resistance gene (ARG) analysis and 16 S rRNA amplicon sequencing. Similar diversity of ARG profile was found in both types of biofilms, suggesting that all ARG categories decreased in richness along the filter bed. In general, surface sand biofilm remained the most active layer with regards to the richness and abundance of ARGs, where GAC biofilms showed slightly lower ARG risks. Network analysis suggested that 10 taxonomic genera were implicated as possible ARG hosts, among which Nitrospira, Methyloversatilis and Methylotenera showed the highest correlation. Overall, this study was the first attempt to consider the whole structure of the GAC sandwich biofilter and results from this study could help to further understand the persistence of ARGs and their association with the microbial community in drinking water biofiltration system

    A Portable Device for the Generation of Drug-Loaded Three-Compartmental Fibers Containing Metronidazole and Iodine for Topical Application

    Get PDF
    The use of combination therapies for the treatment of a range of conditions is now well established, with the component drugs usually being delivered either as distinct medicaments or combination products that contain physical mixes of the two active ingredients. There is, however, a compelling argument for the development of compartmentalised systems whereby the release, stability and incorporation environment of the different drugs may be tailored. Here we outline the development of polymeric fine fiber systems whereby two drugs used for the treatment of wounds may be separately incorporated. Fibers were delivered using a newly developed handheld electrospinning device that allows treatment at the site of need. Crucially, the delivery system is portable and may be used for the administration of drug-loaded fibers directly into the wound in situ, thereby potentially allowing domiciliary or site-of-trauma administration. The three-layered fiber developed in this study has polyethylene glycol as the outermost layer, serving as a structural support for the inner layers. The inner layers comprised iodine complexed with polyvinylpyrrolidone (PVP) and metronidazole dispersed in polycaprolactone (PCL) as a slow release core. The systems were characterized in terms of structure and architecture using scanning electron microscopy, transmission electron microscopy, attenuated total reflection Fourier transform infrared spectroscopy and diffractometry. As antibacterial creams are still used for managing infected wounds, the performance of our trilayered fiber was studied in comparison with creams containing similar active drugs. Drug release was measured by UV analysis, while antimicrobial efficiency was measured using agar diffusion and suspension methods. It was found that the trilayered systems, averaging 3.16 µm in diameter, released more drug over the study period and were confirmed by the microbacterial studies to be more effective against P. aeruginosa, a bacterium commonly implicated in infected wounds. Overall, the portable system has been shown to be capable of not only incorporating the two drugs in distinct layers but also of delivering adequate amounts of drugs for a more effective antibacterial activity. The portability of the device and its ability to generate distinct layers of multiple active ingredients make it promising for further development for wound healing applications in terms of both practical applicability and antimicrobial efficacy

    In Vitro Assessment of Shiitake Mushroom (Lentinula edodes) Extract for Its Antigingivitis Activity

    Get PDF
    Gingivitis is a preventable disease characterised by inflammation of the gums due to the buildup of a microbial biofilm at the gingival margin. It is implicated as a precursor to periodontitis, a much more serious problem which includes associated bone loss. Unfortunately, due to poor oral hygiene among the general population, gingivitis is prevalent and results in high treatment costs. Consequently, the option of treating gingivitis using functional foods, which promote oral health, is an attractive one. Medicinal mushrooms, including shiitake, have long been known for their immune system boosting as well as antimicrobial effects; however, they have not been employed in the treatment of oral disease. In the current study, the effectiveness of shiitake mushroom extract was compared to that of the active component in the leading gingivitis mouthwash, containing chlorhexidine, in an artificial mouth model (constant depth film fermenter). The total bacterial numbers as well as numbers of eight key taxa in the oral community were investigated over time using multiplex qPCR. The results indicated that shiitake mushroom extract lowered the numbers of some pathogenic taxa without affecting the taxa associated with health, unlike chlorhexidine which has a limited effect on all taxa
    corecore